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ABSTRACT

A viscous or inviscid cylindrical jet with surface tension in a vacuum tends to pinch due

to the mechanism of capillary instability. We construct similarity solutions which describe

this phenomenon as a critical time is encountered, for two physically distinct cases: (i)

Inviscid jets governed by the Euler equations, (ii) highly viscous jets governed by the Stokes

equations. In both cases the only assumption imposed is that at the time of pinching the

jet shape has a radial length scale which is smaller than the axial length scale. For the

inviscid case, we show that our solution corresponds exactly to one member of the one-

parameter family of solutions obtained from slender jet theories and the shape of the jet is

locally concave at breakup. For highly viscous jets our theory predicts local shapes which

are monotonic increasing or decreasing indicating the formation of a mother drop connected

to the jet by a thin fluid tube. This qualitative behavior is in complete agreement with both

direct numerical simulations and experimental observations.

'This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1 Introduction

It is well known (Rayleigh (1878)), that a circular jet of finite radius with a surface which

supports surface tension is linfarly unstable to a long-wave capillary instability. Any small

perturbations with wavelengths larger than the jet radius grow exponentially. Furthermore,

linear theory predicts a maximally growing wave and hence a dominant length scale for

the instability. According to linear theory, then, the dominant wavelength is approximately

9a where a is the unperturbed jet radius (this result is independent of the surface tension

coefficient). Experiments indicate that the insta!,ility can lead to breakup, or pinching, of the

jet into drops. Clearly the pinching phenomenon is nonlinear since the initial disturbance has

to grow to amplitudes of the order of the unperturbed jet radius. Linear thcory, however,

does well in the qualitative prediction of breakup times, for instance, by employment of

empikial argument- such as e-fold amplifiation of perturba*finn. In many applications the

shape and jet velocities at breakup are useful but cannot be obtained from linear theory.

This classical problem has been studied extensively; experiments have been carried out by

Donnelly and Glaberson (1966), Goedde and Yuen (1970) and more recently Chaudhary and

Maxworthy (1980a,b). Weakly nonlinear theories (see below) have been carried out by Yuen

(1968) and later by Chaudhary and Redekopp (1980). A review of the subject can be found

in Bogy (1979) while recent simulations using boundary integral techniques are desccibed in

Mansour and Lundgren (1990).

Viscosity dominated flows form a separate but parallel field. Tomotika (1936) consid-

ered the linear stability of a stationary cylindrical thread of viscous fluid surrounded by a

second viscous fluid with surface tension acting at the interface. Qualitatively, the stability

results are similar to inviscid studies with a maximally growing wave of the order of the

unperturbed thread radius. A more complete theory, including the effects of non-uniform jet

velocities can be found in Chandrasekhar (1961), where it is shown that capillary instability

provides linearly growing waves that scale on the jet radius. Recently, Tjahjadi, Stone and

Ottino (1992), have undertaken an experimental and numerical study of breakup of viscous

cylindrical threads of one fluid in another. The experiments and the computations show that

at the time of breakup the jet tends to form larger mother drops joined to smaller satellite

drops by thin slender tubes. It is precisely this regime that we can describe theoretically

with excellent qualitative agreement with both computations and experiments. Besides their

intrinsic interest, such solutions can be useful in providing initial conditions for continuation

of numerical solutions just before the change in topology necessitated by the pinching. The

analytical description of local structures is also useful in the determination of the effect of

additional physicochemical effects such as surface active agents or electrical forces on the
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pinchinIg process.

The present approach is a fully nonlinear one with interfacial deflections as large as the

Iu1listurlred jet radlis, as opposed to most previous weakly nonlinear studies. ('haudhary

and Redekopp (1980) (see also Yuen (1968)) consider two low amplitude (asymptotically

small but not infinitesimally so) initial perturbations, a fundamental and a harmonic. These

are followed up to cubic order in the initial small amplitude, which is the first stage when

the modes interact nonlinearly to produce an amplitude equation. The methodology is that

of the Stuart (1960), Watson (1960) classical weakly nonlinear theory, even though the jet

problem always has a band of unstable waves which does not become monochromatic as a

flow parameter (e.g. capillary number here) is varied. The results are therefore expected to

be valid for sufficiently small times, but as Chaudhary and Redekopp indicate qualitative

features of the experiments are reproduced at times which seem to be beyond the validity

of the theory. Fully nonlinear theories allow the interfacial amplitude to be as large as the

unperturbed jet radius, a situation which is essential in the description of breakup. This

usually means that the problem should be addressed numerically, and it is the objective of

this work to present an analytical alternative to breakup. A fully nonlinear theory of jet

breakup in a vacuum was developed by Ting and Keller (1991), referred to as TK. This

is done by use of slender jet theory (see below) which was extended by Papageorgiou and

Orellana (1993), referred to as PO, to describe breakup of jets of one fluid into another

with different density, with or without surface tension and inclusion of Kelvin-Helhnoltz

instability. In both cases, a simplified set of evolution equations involving time and the axial

coordinate alone, are derived by an asymptotic expansion procedure which uses the ratio

between undisturbed jet radius to characteristic axial length scale as a small parameter. As

noted by Papageorgiou and Orellana, such an ansatz can be applied to flows which have

initial conditions characterized by a long axial length scale, for instance. This implies that

the slender jet theory preserves such geometry throughout the evolution and at the time of

pinching the distance between successive pinch points is large compared to the undisturbed

jet radius. Qualitatively, therefore, the slender jet theory predicts drops with radii larger

than the undisturbed jet radius. The strength of the slender jet theory, however, is in its

prediction of local structures at the time of pinching. As found in TK and extended to other

flows by PO, a one-parameter family of similarity solutions is possible. Different members

of this family correspond to local geometrical shapes of the jet which are concave, conical

and convex respectively (see PO for representative numerical solutions). In this work we

show that if the slender jet theory is not adopted throughout the evolution, the jet can

pinch according to a single member of the one-parameter slender jet family, corresponding

to concave shapes. Solutions with zero surface tension also follow by simply discarding one
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term from the similarity equations. As shown in PO, tile slender jet equations with zero
surface tension constitute a system of two nonlinear hyperbolic conservation laws with the

final outcome of the initial value problem being the formation of a shock after a finite time.
Clearly the development of short axial length scales is inconsistent with the fundamental

assumptions of the theory. The direct theory presented here, however, does not assume
the slender jet approximation throu-hont the evolution and so does not suffer from the

restrictions outlined above. Consequently, a pinching solution for zero surface tension can

be given for a flow which is stable according to linear theory. The shapes at breakup are

monotonic indicating the possibility of formation of mother drops joined to satellite drops by
thin fluid tubes. Such shapes are seen in experimental studies of inviscid jets (see Donnelly

and Glaberson (1966)).

We emphasize that slender jet theories are powerful methods in the description of local

structures in pinching phendomena. In capillary instability phenomena in three dimensions,
slender jet theories provide simplified sets of evolution equations which can be analyzed for

breakup. Since at breakup of cylindrical jets the slender jet assumptions are valid it is not

surprising to find that a description of breakup emerges. Physically, the disturbance must be
characterized by large wavelengthb initially. The present approach corresponds to a different

physical set-up as we describe next. If the jet is allowed to undergo natural growth without
any external forcings and linear waves are at first important, then linear theory can be used

to predict a maximally growing wave. As mentioned above, this wave has wavelength of the

order of the undisturbed jet radius and so when the evolution enters the nonlinear regime,

the interfacial waves have axial length scales comparable to the undisturbed jet radius.
The slender jet approximation may not be appropriate, therefore, for the total duration of

the evolution to breakup, even though it is appropriate locally at breakup. The analysis
presented here, assumes that near the singular time the jet radius is asymptotically smaller

than the axial length scale, a condition which may be inappropriate for the past history of

the evolution.

The article is organized as follows. Section 2 deals with the breakup of inviscid jets

governed by the axially symmetric Euler equations. A system of differential equations is de-
rived that describes the local structure of the shape and the potential of the jet at breakup.

Numerical solutions are given and a correspondence is made with the slender jet results of

PO, both in the presence and absence of surface tension. In Section 3 we analyze viscous
axisymmetric jets. The equations studied are the Stokes equations (creeping motion corre-

sponding to small Reynolds numbers) and a differential equation describing the jet shape at

breakup emerges. The analysis leading to this equation is more involved than the inviscid
case due to the higher order of the field equation and the additional stress boundary condi-

:3



tions. Numerical and analytical aspects of the equation are also given. Finally Section 4 is
devoted to discussion and comparison with experiments and simulations.

2 The theory for inviscid jets

The equations governing the fluid motion can be written in terms of a velocity poten-

tial 0(t, r, z) which is independent of the azimuthal angle 0 for axisymmetric flows. A
system of cylindrical polar coordinates (r, 0, z) is used with corresponding velocity vector
u = (u,v,w) = VO. Using this notation, 0 satisfies Laplace's equation while at the free
surface two conditions are specified, a kinematic condition and a normal stresses balance
which gives the pressure jump across the interface. When the latter condition is used in the

z-momentum equation the usual Bernoulli equation arises. Without loss of generality we
give the system for a static undisturbed jet, noting that any background axial velocity can
be removed by a Galilean transformation. The equations with boundary conditions are

4, + 1-4) + 4) = 0, (2.1a)

On . = S(t, z),

Or= s, + O.S,, (2.1b)

0 .+.-,-. (1 + 0.) (2.1c)2) + I() ) )= - -•= + sZ2 )= •1.,

A final condition which completely specifies the problem is regularity of 0 at r = 0. Equations
(2.1a-c) are in non-dimensional form with the non-dimensional group containing the surface
tension coefficient (the Weber number) scaled to unity, in anticipation of this canonical

rescaling in the final similarity equations.
In general (2.1a-c) must be addressed numerically. We construct pinching solutions of

(2.1a-c) by assuming the following ansatz as a singular time t, is approached from below:

7. = (t, - t)'y , z = (t, - t)fl , S(t, z) = (t, - t)f(0), (2.2a)

0(t, 7, z) = (t, - t )"x(t , y, ý). (2.2b)

According to these transformations time and space derivatives become

0 a + _3_ _ a
÷ + -at at (ta-t)aý,

a --_ (t'9 t)-' a -- 4 (t, - t)-1 (2.2c)
ar - ay a Z a
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Physically, we expect the jet radius to be much smaller than the axial length scale at breakup.

This implies that r << z which in turn yields the condition

a > /3. (2.3)

Inequality (2.3) is the only necessary assumption for the theory to be consistent.

Substitution of the ansatz (2.2a-c) into the Laplace equation (2.1a) indicates that since

a > 0, the dominant terms come from the r-derivs.tives. The leading order contribution

which is regular at the jet axis y = 0 is independent of y, and we must go to a higher order

to obtain a non-trivial balance. This suggests seeking a solution by expanding X in (2.2b)

in appropriate powers of (t, - t) as follows:

0 = (ts - t)0 (Xo(Y,' + (t, - tXI (y, ý) + (t, - t)'x2(y, ý) +...). (2.4)

Substitution of (2.4) into the Laplace equation (2.1a) gives

(tY - t) + + (t3 - Y ( ,X + +

(ts - t) -- 20 Xot +...= 0. (2.5)

It can be seen from (2.5) that the first stage where a regular y-dependent solution is possible,

arises if the X, terms are in balance with the Xo0 term. This yields

=3 (2.6)

The solutions for X0 and X, which are regular at y = 0 are

Xo = A x), X2 =-ly At + B(ý), (2.7a, b)

where A and B are unknown functions of ý.

Next we consider the kinematic condition (2.1b). Substitution of the ansatz (2.2) and

(2.4) along with the solutions (2.7a,b) yields the equation

(ts - t)-Y+O-, 1-2f Att) = -a(ts - t)- f

+3(t, - t) -'If + (t - t)+-2A +... + (2.8)

A few comments about (2.8) are in order. First, the two terms which contain A are multiplied

by the powers -y +/3 - a and -y + a - 2/3 of (t, - t) respectively. Since a = 2/3 from (2.6) these

terms are in balance and provide no new information. An expression for -Y is next found by

making a balance of all four leading order terms in (2.8). This gives

y = 2/3- 1, (2.9)
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and the kinematic condition beconies to leading order

-1 A 3
A -I3df + /Alf' + f'A', (2.10)

2 2

where primes denote a-derivatives.

Another equation, as well as determination of the free parameter J3 is found from the

Bernoulli equation (2 1c). Substitution of the ansatz (2.2), (2.4) and retention of the largest

possible terms as t - t,-, gives the following equation:

-( t)- A + (t, - t)- Aý + (t, - t)•- 2 -2 - A2 = -(t,-t)-af-1. (2.11)

We arrive at (2.11) above by dropping any terms that are smaller than the ones retained

using the fact that a > /3 alone. Next, we balance the different terms in the equation. The

terms of orders (t, - t)"-l and (t. - t) 2"- 2tO are in balance by virtue of (2.9) above. The

surface tension term containing f-' is chosen to balance the other terms and produces a

coupling with (2.10) between inertial and capillary forces. This is possible if

-Y - 1 = -a.

Use of (2.6) and (2.9) that provide a and -y in terms of /3 yields a value for /3 and hence a

and -y follow,
6 4 1
7 , 7'=, (2.12)

while equation (2.11) becomes

-- A + 1. (2.13)
7 7 2

Equations (2.10) and (2.13) form a coupled system which must in general be addressed

numerically. Before presentation of such results we cast (2.10), (2.13) into a form which is

readily comparable with the one-parameter family equations of PO. We define G = A( and

f = V/FT, differentiate (2.13) with respect fo ý to yield the system

12 4 F-- F + 4CF' + (GF)' = 0, (2.14a)
7 7

3 , 4 ;, 13-G + 4-(G' + -(G 2 )' = -(F-/ 2 )'. (2.14b)
7 7 2

Equations (2.14a,b) are exactly the equations found from slender jet theory corresponding

to /3 = 4 In the absence of surface tension the term on the rigit hand side of (2.14b) is
7.

dropped. As shown below, zero surface tension solutions are possible eveni though the flow is
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linearly stable. Before presentation of numerical solutions we give the asymptotic behavior

of (2.14a,b) for large 1() (for more details see PO). In the absence of surface tension we find

F ,- 3 G ,- ý-41 -- oo, (2.15a)

F -,,(•- G = -ý +... ý -- - o. (2.15b)

Note that the shapes predicted for zero surface tension grow oil one side (as 0 -- 00 here)

and decay at the other end of the domain. This is in contrast to the surface tension case as

the following asymptotic forms indicate,

e ' • -,•-4 oo, (2.16a)

F (_•)3 G (-i • - -o. (2.16b)

Numerical solutions of (.2.14a,b) showing the variation of F and G with ý are given in

Figures 1 and 2 for zero surface tension. Verification of the asymptotic forms (2.15a,b) is

included in Figures 3 and 4 for the behavior of F and G respectively. This is achieved by

constructing logarithmic plots of the numerical solutions for large positive and negative ý.

The slopes of the lines so obtained were computed from the data by a least squares fit and are

indicated on the Figures. It is seen that agreement is very good and improves as the range of

integration is extended. The results for non-zero surface tension are presented in Figures 5

and 6 with the corresponding logarithmic plots confirming the asymptotic behavior in Figures

7 and 8. The main qualitative difference between the two cases is that in the absence of

surface tension the shape is monotonic tending to zero at one end of the similarity region

and growing algebraically at the other end, while in the presence of surface tension the shape

function grows algebraically (at the same asymptotic rate) at both ends of the domain. The

former type of behavior is also obtained for highly viscous jets analyzed in Section :3.

2.1 Conservation integrals at breakup.

The inviscid jet flow is conservative and solutions to the problem are required to conserve

the total momentum and energy as well as mass. It can be seen from the solutions just

constructed that velocities are becoming unbounded as the jet radius shrinks to zero. It is

important, therefore, to verify the consistency of these solutions with conserved quantities of

the system. We define the total mass, momentum and energy of an axially periodic portion

of the jet by 11, 12 and 13 respectively. These are given byD S
I, = 2rrp JoL J rdrdz, (2.17)
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2~rip~ j( + 411)'2rd,d1"Z, (.

1:3 27rpf +! , Qrdrdz j (2.H)4ý

where (T Is the surface tensioni co. I` lent and~ the luatit it jes (2.1I7)- (2. 19) are inI dimiensionial

forms. The cont ribuitionus of thle Inutegrals 11, 12 and~ 1:3 iii the simniilarity region are found

Iw Slulbstjtuitioll of tile ,ýadlllg order soluitions froin the ansatz (2.2a-c) to give the following

q uait it tes

(t, t)y f F da, (2. 19)

'2 (t, - F( J Hdý. (2.20)

1- (t8 - t)1_ J ( F~'dý. (2.21)

'Flie con~trib~ution~s to the energy integral (2.18) of the kinetic and surface energy inl the

simiilarity region are of the same order and form and both appear lin (2.21 ); thle expression,
therefore, is valid b)oth jill the absence andl presence of surface tension. We have shiowni

analytically andl numerically that F and (G become unbounded as 1ý ,o. InI order to

evaluate thle contrib~utions (2. 19)-(2.21) onl the large scale flow we need1 to transform to outer

variables. The main contributions to the integrals come from the asymptotic formis (2. 15a,h))

for zero surface tension or (2. 16a,b) for tion-zero tension. The behavior at Iinfinity, however,

is the same for both cases and the resuilts that follow are equally valid. (.'onsideration of the

leading ordler contributions of (2. 1!))-(2.21 1) gives

11~ t, t ) L6
4 

- 4. (2.22)

1 ti t ) " !- ( t3  49 7)z
T  (2.23)

13 (t, -)7 -2 (2.24)

kX'e c-an conclude from (2.22)-(2.24) that as the singular time 'is approached, thle solu-tionls

c'onstructed lhere are consistent with the conservation integrals of the problem. Mlore sJpecif-

ically the total mass, miomentum and~ energy inl the breakup region tends to zero as the

Singular time is reached. 'Flits theoretical result canl be of used as it criterion inI numeri-

Cal simul at ions, for example, si tice near thle singular t inme the total energy of the system is
c~oncenltrated away from the similarity regionl.

3 Theory for viscous jets

Ill thils sectioni we cotisildcr thle collapse of a v'is omis t hreadl of fluild of 11udistIirll-ed radlis. I?

minder capilIlary Inst abilIity. In mnumerouis a ppl icat ions chiaract erist ic Reyniold s nimbm ers arC
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small and the flow is governed by the Stokes equations. Such flows are driven by capillary

forces which in turn provide a scale for the flow velocities. In non-dimensionalizing tile

equations, therefore, the following scales are used:

(,r, z) = R( ) (u, tv) -(i, ) p -P t=
Ip R

where a is the surface tension coefficient and u the fluid viscosity. The non-diniensional

equations and interfacial boundary conditions become (dropping the bars):

/Lu - --rU = p", (3.1a)

AL' = pZ, (3. 1b)

-(ru), + wz -0, (3.ic)
r

02 1 0 02
/ - Or2 + r - 0+--j,. 0) Z2

On r S(t, z) we have

(ui + w,)(i - 2') + 2u,S.: - 2wz2 S_ 0, (3.1d)

p- 2u, - (-p + 2wz)5K2 + 2(u,- + w,)Sz =

-(5,- 0, + , ) 1+ ,.'2)-1/2, (3.1C)

u St + wZ. (03.1 f)

Tlit- interfacial conditions (3.1d-f) represent the tangential stress balance, normal stress

balance and the kinematic condition respectively. An additional condition is regularity of

the velocity field on the jet axis r = 0. The problem (3.1a-f) poses a formidable analytical

task. Analytical studies are usually confined to linear stability and in the fully nonlinear

regime the problem has been addressed numerically (see Introduction). In order to draw

up an analogy with the inviscid analysis of Section 2, we can introduce a streamfunction i.,

defined by ui -10z, W = W 4'r so that the continuity equation (3. Ic) is satisfied. Elimination

of p between (3. 1a,b) yields a single equation for ;,, namely

20
E4 Z, = 0, E 2  

' A - -- (3.2)
r 01-

The flow field in the viscous case is governed by a fourth order equation as opposed to the

second order Laplace equation for the potential in inviscid flows. As seen below the analysis

of viscous jet pinching is slightly more involved. In what follows we choose to work with

primitive variables rather than with the streamfunction 4',.



Following the ideas developed in Section 2, we look for singular terminal states of (3. la-f)

according to the atisatz

r = (t, - t)y z = (t, - t)• S = (t, - t)af(ý),

U, = (t 0 - tW(t, y,0 u =(t. - t0)'+"-#U(t, y, ) p = (t, - t)0P. (:3.3)

The expression for u follows from the continuity equation (3.1c) once w is specified, and the

scaling for the pressure p is a consequence of the normal stress balance equation (3.1e) since

capillary instability drives the dynamics. As before, the geometry of pinching dictates the

inequality

a > 3. (3.4)

Consideration of equation (3.1b) for w indicates that if a leading order balance is made

between the radial derivative terms of w and the pressure gradient term (this requires y =

a - /3), the following leading order solution for W arises

W = -yP + A(), (3.5)4

where A(ý) is an unknown function. An inconsistency appears now if (3.5) is substituted

into the tangential stress balance equation (3.1d). The leading order contribution to (3.1d)

after substitution of the scalings (3.3) is simply W. = 0 on y = f(ý). Application of this

condition to the solution (3.5) found above implies that P~f(ý) = 0 leading to an inconsistent

,•i tion P = const.. A consistent solution is constructed by expanding W (and therefore U)

in appropriate powers of (t, - t) with the leading order contribution of W being independent

of y so that the tangential stress balance is satisfied identically to leading order. Higher order

corrections from (3.1d) then enter to force a nontrivial solution. The appropriate expansions

for w and u become, then,

S= (t, - t), (Wo(O) + (t8 - t)"W, + (t8 - t)aW2 +...), (3.6a)

, = (t, - t)" 4-Y (Uo(Y, ý) + (ts - t)Ul, + (t, - t)"U 2 +...). (3.6b)

The solution for Uo which is regular at y = 0 follows from (3.1c)

S= -IyWo. (3.7)
2

Next we obtain the solutions for W, and U1. Using (3.3) and (3.6a) in equation (3.1b) gives

(t, - t),- 2 v d2 + 1Ž ((t, - t)•WW + (t, - o)Ww, +

+ - t) 0"-,Woý + ...+ (t4 - t)0 P•. (3.8)

10



Balance of the leading order terms involving Wo, W, and P gives

3 1a• = -#3 -Y = - # 1, (3.9)
2 2'

and a solution for W1 follows by integration with respect to y since the pressure is independent

of y by the normal stress balance (see comments below also)

W, = Iy'(Pt - W0o) + A(ý), (3.10)

4

where A is some function of ý. Using (3.10) and (3.1c) gives

u, = -- y 3 (Pa - Wo0) + IyA•. (3.11)
16 2

Implicit in the solutions (3.10), (3.11) is the assumption that P. = 0. Using the values (3.9)

for a and -y shows that the leading order balance in (3.1a) is

+ UO = (3.12)

Now substitution of the solution (3.7) for Uo into (3.12) shows that the left hand side is zero

and so

Py =0. (3.13)

Equation (3.13) is crucial for the consistency of the theory.

Next we consider the tangential stress balance. Using the values (3.9) gives the following

equation to leading order

U0o + Wly + 2Uof' - 2Woef' = 0 y = f(•). (3.14)

Use of solutions (3.7) and (3.10) into (3.14) gives an ordinary differential equation for W0(ý),

(- f 3W) PP. (.5

An expression for P in terms of W0 is available from the normal stress balance equation. It

is found that to leading order several terms in this equation are in balance (according to the

previously found values (3.9)) the result being

1
P- 2U0 y = I y = f().

f
Substitution of this into (3.15) and integration gives the solution

I k
W 3O f + f-2 ' (316)

11



where k is a constant of integration. With 1WV0 known in terms of f, ail equation for f arises
from the kinematic condition (3.1f) and use of the ansatz (3.3) along with the appropriate
derivative transformations (see Section 2 also). To leading order, therefore, the kinematic
condition becomes

(t, - t)+'-"~Uo = (t, - t)"- 1(-af + /3f') + (ts - t)+-Y'"Wof'.

A balance of terms is achieved if -y + a - = a - I which along with (3.9) gives
2 1

a =1 /3 =- -=--. (3.17)
3 3

The kinematic equation is

(WO+ 2 f'+ (-I + I1W0) f = 0,

which on elimination of WO from (3.16) becomes

w0 + + (-f- + =0. (3.18)

Equations (3.16) and (3.18), therefore, provide a coupled system of first order equations to

be solved subject to conditions at ý = 0, for instance. In subsections 3.1 and 3.2 that follow
we consider analytical and computational aspects of this system.

First, some comments on the consistency of our theory with the original assumption that
the flow is in the Stokes regime are necessary. It is seen from the values (:3.17) that the
axial and radial velocities (see (3.6a,b)) have size O((t, - t)-1'/3 ) and 0(1) respectively at
the time of pinching. The magnitude of the velocity vector is becoming infinite, therefore,

and the possibility of violation of the Stokes flow assumption arises. The terms ignored are
the unsteady and convective terms of the Navier-Stokes equations which read

Rn(ut + uu,. + uw2 ) = -p, + Au - -u (NS,)7'2

Re(wt + uw, + ww 2) = -Pz + Aw, (NS2)

where Re = p is the Reynolds number. In deriving the similarity equations (:3.16), (3.18) we

use information from 11o, Ul in (NS1) and Wo, W, in (NS2). The smallest terms considered,
therefore, are of O((t, - t)-4/3) in (NS1) and O((t, - t)- 513 ) in (NS2), coming from the

Laplacian of U1 and W, respectively. The largest possible terms which would enter through
the unsteady and convective terms on the left hand side of (NSI) and (NS2) are easily
calcldated to be of orders 0((t, - t)-') and 0((t, - t)-4/3) respectively. As t --+ t,-,

therefore, the validity of the Stokes approximation and the ansatz leading to (3.16), (3.18)

is consistent; higher order terms eventually enter via unsteadiness and nonlinearity in (NS I)
and (NS2) b1it are of no consequence to the leading order balances coistructed here.
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3.1 Analysis of the similarity equations

Elimination of W0 between (3.16) and (3.18) yields a single second order equation for f

which can be written as:

I k) d f f2 + f_-3k)_ 2(ff K &f f2df~) (3.19)f f_ d--- - 3ff

At first sight, equation (3.19) appears to admit a class of even solutions which, without loss

of generality, may satisfy f(0) = fo, f'(0) = 0. A series solution for small ý, however, with

the above initial conditions is found to yield a constant solution f(ý) = fo. For general

values of ý it can be shown that acceptable solutions to (3.19) produce monotonic functions.

Two distinct cases need to be considered, (a) k < 0, (b) k > 0.

We consider the case k < 0 first. If we assume that f' vanishes at some finite value

of ý = ýo say, then by (3.18) we deduc'- that W 0(ýo) = 2. Using this in (3.16), however,

requires - + k - 2 which is impossible since k < 0 and f(ýo) > 0, showing that f'
3f(ýo) f2(to)

is non-vanishing and so f(ý) is monotonic. This result can also be proved by construction

of closed form expressions for f'. We integrate (3.19) once with respect to ý so that

df-• = AG(f),

0 ~f2 + f _ 2k (.0of(ln(G(f))) f 2 + -(3.20)

3ff 2 + if -

where A is a constant. Equation (3.20) can be integrated explicitly. There are three distinct

cases: (i) k = 0, (ii) k < -- , (iii) -- L < k < 0, giving the following solutions.

Case (i), k = 0

G(f) f (3.21 a)
(f + 1/6)T

Case (ii). k < -1/72 (k = -2A 2 )

G(f) = f fp 2 tan-' f-+ (3.21b)G()=(f2 + if +A 2)1,xp tVA PA4 • 2 -ýL

Case (iii), -1/72 < k < 0 (y = (7 + )1)i/
2 )

1 3 9 1 -½+'
G(f) = f(f + 12 2 p) 12 P) (3.21c)

These expressions show that G(f), and hence f', is non-vanishing; cases (i) and (ii) are

straightforward while in case (iii) the observation Ijy < - yields the desired conclusion.

13



When k > 0 the expression for G is identical to (3.21c) with i as given there. It follows

that for k > 0,
1

1- < / < 00,12

with equality on the lower bound already covered by the case k = 0 in (3.21a). Using this

inequality we see from (3.21c) that at positions where f = p - •, the derivative f' can (i)

become infinite, (ii) be finite and non-zero, (iii) become zero, depending on the value of the

exponent -1 + -" In terms of 1 these three cases are

1 1 1

respectively. In what follows we show (by sketching the behavior rather than presenting

rigorous proofs) that case (ii) alone allows admissible solutions.

We consider the range 1 < p < oo first. As mentioned above the slope f' becomes

infinite at positions ýo given implicitly by f(ýo) = p - The interfacial slope becomes

double valued; a local analysis in the vicinity of fo = y - 12 gives

2
S-o (f - fA) 2 < q < 2.

We note that an infinite slope in f violates the ansatz established by the scalings (3.17) since

spatial variations in the axial direction become much larger than the variation in the radial

direction.

Next, we consider the values -L < p < I. It is seen from (3.21c) that the derivative
12 3

vanishes when f = p - since the exponent of the last factor satisfies 0 < -1 + < 1.

This inequality for the exponent, however, implies that higher derivatives of the interfacial

amplitude in the similarity region are unbounded and this case is dropped since we are

interested in smooth soi.tions.

The final possibility is p = y (k = •) which casts (3.21c) into

G(f) = f(f + 1(3.2 d)

Equations (3.21a) and (3.21d) can be integrated to yield closed form expressions for ý in

terms of f; the solutions for f are implicit, therefore, and are not very illuminating besides

the checks they provide for the numerical and asymptotic work. These solutions are

k = 0, (3.21a)

(f W I5( 1 = A0• -• Bo, (3.22a)
+ 3 61/

k = 1, (3.21d)
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I(f; 51)/3= A, + B,, (3.22b)

where
I(f; K) = 2-U )3+KCln((f + r+,')3 -K)

_K 2 1n (f + t3)3 + K(f + ±K 3 )3 + K2 + tan- (2(f 3+K)

The constants A0, A 1, B0 , B1 are found from the initial conditions on f and f' at ( 0 for

instance. The behavior of the solutions (3.22a,b) for large 1 are easily obtainable. Without

loss of generality we assume A0 ,1 > 0 to obtain

k=0
f _ (2Ao) 3/ 3/ 2  0 o,

1 1
f 00 - -o. (3.23a, b)

k=
3

f (2Ao) 3/ 2

f - exp 5-1•3 -• . (3.24a, b)

For general values of k the asymptotic behavior is more easily obtainable directly from

equation (3.19). Assuming that f'(0) > 0, we look for solutions that grow as -- +00 but

decay as -* -oo (such behavior is supported by the closed form solutions (3.22a,b) as well

as numerical calculations). To leading order, equation (3.19) takes the forms

- f >> 1, (3.25a)

f f if" f' f"1 f
f - (k 7 0) , =2- (k =i) f<< 1. (3.25b, c)
f' f ft f

It can be seen that for large positive ý the asymptotic form is independent of k, ill agreement

with (3. 2 3a) (3.24a) above. The asymptotic forms are, therefore,

f _ ý3/2  ý _ oo, (3.26a)

f - exp(-ql~l) (k ¢ 0) f - l-' (k = 0) 00-- , (3.26b)

where q is a positive constant which can be determined n1i1Rrically. Given the behavior of

f the asymptotic forms for the axial jet velocity W0 follow from equation (3.16),

Wo "_ con7st. + Q(ý-l/2) 0 -- 00, (3.27a)
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Wo - exp(2qj•j) (k $ 0) Wo _ 1ý13 (k = 0) • -- -oo. (3.27b)

In the following section we present numerical solutions of the similarity equations with

particular emphasis on the verification of the analytical findings of this section.

3.2 Numerical solutions of the similarity equations

Equations (3.16), (3.18) or equivalently equation (3.19) were solved numerically by specifying

conditions at ý = 0 and integrating out to +00 and -c. Typically we worked with the second

order equation (3.19) with initial conditions f(0) = fo and f'(0) = f' > 0. Integration to an

appropriately large positive and negative value of ý was achieved by a fourth order Runge-

Kutta method. Representative solutions are considered for the three cases (i) k < 0, (ii)

k = 0, (iii) k = 1. We note that the distinctions between different negative values of k are

not important in the numerical calculations.

Figure 9 shows the results for f and W0 of a case having k = -1 and initial conditions

f(0) = 1 and f'(0) = 1. To establish the asymptotic behavior of the solutions for large

1ý] we construct logarithmic plots of the relevant parts of the solutions. Results for large

negative ý are shown in Figure 10 which shows the variation of In(f) and 1n(w) with ý. The

computed slopes included on the curves were calculated by a least squares fitting of the data.

According to the asymptotic forms (3.26b) and (3.27b), w grows exponentially at twice the

rate at which f decays exponentially. The computed slopes of 2.269 and -1.138 for ln(w)

and ln(f) respectively are in full agreement with this finding. The asymptotic form (3.26a)

for large positive ý is confirmed in Figure 11 with very good agreement. Verification of the

behavior of Wo was also obtained by plotting the variation of Wo with •-1/2 for large ý.

For k = 0 and the same initial conditions as above qualitatively similar solutions are

obtained for both f and W0 and representative solutions are given in Figure 12. A comparison

between the numerical and asymptotic solutions for large positive ý according to (3.23a) is

described next. The behavior (3.23a) is equivalent to

ln1(f) :3ln (2) + 1 17 (7) + 31ln(ý).

The value of the intercept follows from (3.20) when the values f(0) = f'(0) = I are used,

and is equal to -0.224. A logarithmic plot of the numerical solution produced a slope of

1.498 and an intercept -0.208 (these results were obtained by integration to ý = 500; these

values improve as the maximum integration range is increased). The results for k = are3

qualitatively similar to those described above and are not included here.
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4 Conclusions

A formal theory has been developed to describe the breakup process of highly viscous or

inviscid jets in air. The similarity solutions obtained here constitute inner solutions in the

vicinity of regions where the jet radius is going to zero which when matched with outer solu-

tions of the Stokes or Euler equations respectively, provide a full description of the breakup

phenomenon. In general the outer soluLions are fully nonlinear and must be computed numer-

ically. In numerical calculations of jet breakup (by boundary integral methods for example),

it is important to have a rational way of continuing the computations beyond the change in

topology necessitated by the physics. The similarity solutions presented here provide such

a possibility since accurate initial conditions for the pinched part of the evolution, consis-

tent with the full equations of motion can be easily calculated. Direct simulations near the

pinching times contain stiffness problems which are likely to produce inaccuracies. Another

example of the need of accurate initial conditions for the jet evolution beyond breakup is the

experimentally and computationally observed behavior of a residual fluid tube at breakup

being accelerated by surface tension to form a jet which can go through the mother drop

it was connected to. The speeds of such jets depend on interfacial tension forces which are

proportional to the interfacial surface area and hence the shape at breakup.

As an illustration of the mechanics of the matching process we consider the results of

Section 3 for highly viscous jets. Matching is achieved as 1 .1 + oo and so the asymptotic

forms of the solutions are essential in achieving this. Using (3.26a), for example, we have

f - Ca/ 2 as ý -+ oo. Changing to physical (outer) variables using the ansatz (3.3) and the
scales (3.17) gives the following condition to be satisfied by the outer solution as z --+ 0 (we

have assumed, without loss of generality that pinching occurs at z = 0),

S -Z2.

The multiplicative constant that goes along with this behavior and which can be found

from the outer solution, fixes the inner problem whose solution is easily obtained from the

similarity equations.

We have also found a qualitative difference between the breakup forms of inviscid jets

with surface tension and their highly viscous counterparts. In the former case our solutions

indicate that at breakup the interface is more or less symmetric with growth to mother drops

on either side of the pinch point. In the latter flows (as well as inviscid jets with zero surface

tension), our similarity solutions indicate that at breakup there are thin, and relatively long,

fluid tubes which taper to zero diameter on one side and grow to connect to a mother drop

on the other side. These findings are in full qualitative agreement with photographs from

17



various experiments on both highly viscous jets (Tjahjadi et al. 1992) as well as inviscid

ones (Donnelly and Claberson 1966, Chaudliary and Maxworthy 1980a,b).
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"* Figure 1 Inviscid jet with zero surface tension; similarity solution f(f).
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"* Figure 2 Inviscid jet with zero surface tension; similarity solution g(f).
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9 Figure 3 Inviscid jet with zero surface tension; asymptotic behavior of f(•).
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* Figure 4 Inviscid jet with zero surface tension; asymptotic behavior of g(ý).
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Shape in self-similar region
beta=417

6000.0

4000.0

2000.0

0.0
-20.0 -10.0 0.0 10.0 20.0

xi

9 Figure 5 Inviscid jet with surface tension; similarity solution f(•).
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* Figure 6 Inviscid jet with surface tension; similarity solution (fl().
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f~xi) Asymptotic behavior for large lxii
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e Figure 7 Inviscid jet with surface tension; asymptotic behavior of f()
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e Figure 8 Inviscicl jet with surface tension; asymptotic behavior of y(f).
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Similarity solutions
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* Figure 9 Highly viscous jet with surface tension. Similarity solutions Wo(ý) f(ý).
k -1, initial conditions f(0) = 1, f'(0) = 1.
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e Figure 10 Highly viscous jet with surface tension. Asymptotic behavior as -- +ao.

k = -1, initial conditions f(0) = 1, f'(O) = 1.
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Behavior at plus infirty
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* Figure 11 Highly viscous jet with surface tension. Asymptotic behavior as -- -oc.
k = -1, initial conditions f(0) = 1, f'(0) = 1.
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* Figure 12 Highly viscous jet with surface tension. Similarity solutions W0(o) f(ý).
k = 0, initial conditions f(O) = 1, f'(0) = 1.
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